Are There Odd Amicable Numbers Not Divisible by Three?

By S. Battiato and W. Borho

Abstract. A conjecture of Bratley and McKay, according to which odd amicable numbers should be divisible by three, is disproved by some counterexamples.

1. Even and Odd Amicable Numbers. Two natural numbers A and B are *amicable* if each of them is the sum of all proper divisors of the other. If A = B, they are called *perfect* numbers, otherwise they form an *amicable pair*. The first perfect numbers 6, 28, 496, 8128, and the smallest amicable pair 220, 284, were known to the Greek mathematicians. Two further amicable pairs were discovered by medieval Islamic mathematicians, and rediscovered by Fermat and Descartes. All of these were *even* numbers. In fact, they were found by the famous rules given by *Euclid* for perfect, resp. by *Thabit ibn Kurrah* for amicable numbers (see, e.g., [1], [5] for a survey of this subject), and so were *even by construction*.

L. Euler was the first to study systematically the question whether or not also odd numbers with these properties may be found. The existence of odd perfect numbers has remained a famous open problem in number theory, while the existence of odd amicable numbers was established by Euler. He described several methods to construct numerical examples, one of which is, for example,

$$A = 32 * 7 * 13 * 5 * 17 = 69615,$$

$$B = 32 * 7 * 13 * 107 = 87633.$$

Since Euler's time, many more even and odd amicable pairs have been found and published: Hundreds of them before, and thousands after the employment of electronic computers in number theory. A superficial glance at the list of hitherto known odd amicable pairs illustrates the fact that the lack of two as a common factor has to be compensated by a sufficient amount of divisibility by the other small prime factors, like three, five, seven. In fact, all odd amicable pairs that we know [2], [6], [7], [8] actually contain some power of three as a common factor. With some familiarity with the various known methods to find odd amicable pairs, it soon becomes clear, that it is actually very hard to avoid three as a common factor. Paul Bratley and John McKay even conjectured that all odd amicable numbers must be divisible by three, see [3], and also R. Guy's book on open problems in number theory [4]. On the other hand, to avoid three is a priori not impossible, but it only leads to very large numbers in all calculations, which are difficult to deal with.

Therefore, we made a systematic attempt to decide the question posed in the title of this note by a *constructive search*, or, in other words, to disprove the conjecture of Bratley and McKay by a counterexample.

Received January 12, 1987; revised July 27, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11A25.

TABLE 1Prime factor decompositions

1	a	*	140453 * 85857199
22	a	*	56099 * 214955207
•		-	
2	a	* *	40459 * 40/5499 * 1124/0663/1
34	a	-	0390029999 ~ 2090404//211
3	a	*	40063 * 1083014405858114729
22	a	*	759883871 * 57100684400759
4	a	*	40459 * 4071703 * 347952801041
33	a	*	62791913183 * 912890522669
5	2	*	40127 * 24316459 * 8637336284693
32	- u a	*	894223226623 * 9425008441529
54	ŭ		034223220023
6	a	*	40127 * 24316459 * 131473538420639
32	a	*	753760237567 * 170197428069899
7	a	*	40459 * 79670932151 * 785235094643
32	a	*	4071703 * 621654783217660851119
8	а	*	40127 * 456864935591 * 2947460281395319
32	a	*	24317567 * 2222097774949919253614239
9	a	*	40127 * 24315667 * 4668800173953586602539
32	a	*	1410559270197839 * 3229592045605749823
10	a	*	40169 * 43850540160157971076585196343983
23	a	*	14887001 * 132233805923 * 894802182277066859
11	а	*	52937 * 2215291513690331 * 134965225980517047468079
33	a	*	164729 * 1222569893 * 78591197135018911142345778143
12	a	*	52937 * 2215291479910079 * 1901293905067632711472171
33	a	*	164729 * 1222569893 * 1107136751268199952431099377023
13	a	*	48619 * 1932038626331293043 * 101457516345910172512469
33	a	*	227597 * 1787122884689 * 23431070376718989407107294679
14	2	*	40697 * 7837685559226301 * 302073366913892362707570079
33	a 2	*	2565569 * 2695609487 * 13932610455428808648764074706747
	u		
15	a	*	48619 * 290822832708589621439 * 14139515710202352254726567
33	a	*	227597 * 1787121242591 * 491536226488477432136736101354399

2. New Results. And here is the answer: Yes, there are odd amicable pairs not divisible by three; see Table 1 and Table 2. The prime factor decompositions of these numbers are of the following form:

$$A = \mathbf{a} * s_1 * \cdots * s_n$$
$$B = \mathbf{a} * p_1 * \cdots * p_m$$

where the common factor is always

$$\mathbf{a} = 5^4 * 7^3 * 11^3 * 13^2 * 17^2 * 19 * 61^2 * 97 * 307.$$

TABLE 2

Decimal representation

1				353804	3844224601	8396504460	7821130625
36D				353808	1696831682	7349549627	3894069375
2			5441	2078286957	7421098242	9810099604	5131589375
44D			5441	3436504035	2070205374	2457772678	1108410625
3			127302	7605743371	3716785701	5197297320	5370406875
46D			127305	9379711520	0172114765	4838692603	4176473125
4			168178	9722864804	0523765509	9240838728	2886525625
46D			168183	1703647644	1457440461	5714272808	6462594375
-							
5			24727315	7305034090	7119626873	2844266174	3800523125
48D			24727932	9737721009	1039519379	3638309215	6354356875
c			276207764	44 0005 0000			
0 40D			3/638//64	4193359222	5434892386	3490036627	7033469375
490			3/639/159	8108343084	9926669250	6866678923	7539330625
7			7400040000	0070005510	00004007777	45 0 4 25 68 00	4005050005
500			7420340023	41700122023	8092403777	4524356/28	18/59568/5
500			1420022002	41/3313303	0209320130	5304942166	0541963125
8		15853	7717605603	7222558560	7477050054	0547040544	1456111075
55D		15854	16619852/2	000/160160	20050353/1	004/242044	14001110/0
		13034	1001303242	0304100100	033333333341	2030123330	02/3100123
9		1336559	4670868055	2280720913	7286174768	3767183363	3131101875
57D		1336592	8302882198	6566894534	2143237977	9474160564	5317538125
						51/1100301	3317330123
10		516804264	4293811374	7164549488	7576790952	8935135589	0875156875
59D		516817095	4582968397	1662879237	9226428017	9959385460	9097963125
11	464378	6200632940	6115250682	0758989010	3254259564	1262634632	5840855625
66D	464384	5728895561	5444125973	7497515559	4798338774	4718106164	1268264375
12	6541834	9066755364	3521495944	2672064596	5576933656	8435296080	0595955625
67D	6541918	7658476693	5758002339	9986352493	7155413846	6739033716	5975564375
13	279618675	6494941078	2034012128	5310115476	3148304524	0497186447	3708280625
69D	279623198	2824883038	6487885985	3425146956	3179113713	1957459345	7658119375
14	000000000						
14	2826980347	3653977372	3436078177	2108197038	6973416712	8681763928	1454949375
עטי	282/048/08	4946367121	8320681103	1027577096	5231392433	0289771234	5583770625
15	586 5826024206	0020764600	4010015 400	0201026467	4757540540	4502024.000	001 84 0 4055
10 12	500 3020024390	6456714674	4410010430	0011000710	4/5/542512	4583231288	2817194375
עכו	200 227092222	0400/140/4	1303921001	0211003/15	30442155544	4089941699	4584405625

Note. Each double row in the tables gives an amicable pair. In front of each pair, we specify the type of the prime factor decomposition (i.e., the numbers n, m above) in Table 1, resp. the number of decimal digits in Table 2.

3. Open Problems. Although the numbers looked for are necessarily quite large, it is very unlikely that our 36-digit example given here is the smallest one. So one may ask to *find the smallest one*.

Are there amicable number pairs of opposite parity? This question, also considered already by L. Euler, seems to be as hard and unaccessible as the existence of odd perfect numbers.

If, however, we replace in this problem the smallest prime factor two by three, then we obtain the following open problem which seems to us quite tractable by computational methods similar to ours.

Open Problem: Find an odd amicable pair with one, but not both numbers divisible by three.

It may very well be that such number pairs can have smaller size than those with both members prime to six, as those presented above.

4. Comments on Methods. Roughly, our method of construction of the numbers asked for in the title proceeds in three steps:

Step 1. Construction of an appropriate common factor **a**.

Step 2. Successive computation of a few "complementary" prime factors s_1 , $s_2, \ldots, p_1, p_2, \ldots$ to make $(\mathbf{a} * u, \mathbf{a} * v)$ with $u = s_1 s_2 \ldots, v = p_1 p_2 \ldots$ a suitable input for the last step, for instance by the method of "breeders" or an appropriate modification thereof; see [2].

Step 3. Computation of the three largest prime factors by the so-called method of *Bilinear Diophantine Equations* (BDE, see [2]), including the necessary *primality* tests.

To be slightly more specific, we have to introduce more notation. Let C denote the largest common divisor of **a** with its sum of divisors $\sigma(\mathbf{a})$, put $D = 2\mathbf{a} - \sigma(\mathbf{a})$, and let $\mathbf{a}' = \mathbf{a}/C$, D' = D/C.

In Step 1, we proceed by building up **a** as a product of powers of different small primes in such a way that $\sigma(\mathbf{a})/\mathbf{a}$ approaches 2 from below. In doing so, we compute $\mathbf{a}, \sigma(\mathbf{a}), \mathbf{a}', D'$ recursively, and we try to get D' as small as possible, without making \mathbf{a}' excessively big. The reason for this will be clear to the reader familiar with the construction of amicable numbers (as in [2]): Essentially, \mathbf{a}' will determine the size of the numbers in all successive computations (e.g., the BDE method), while D' will occur as a denominator in Diophantine problems. So it is best to make D' one, or at least very small, to allow for sufficiently many integer solutions arising in Steps 2 and 3. The crucial point for our present situation is the cancellation by C, that is the replacement of \mathbf{a} and D by \mathbf{a}' and D'. This means that we can obviously work towards all of our goals simultaneously by trying to make C as large as possible.

There are various obvious methods to construct appropriate numbers **a** with relatively large C. Using the multiplicativity of σ , we proceed by building up the number **a** recursively, introducing one or several prime power factors at each step. In deciding which new prime powers to introduce as a factor, we make extensive use of a table of prime decompositions of $\sigma(p^{\nu})$ for all small prime powers p^{ν} . Let us say that p^{ν} "carries" q^{μ} , if q^{μ} divides $\sigma(p^{\nu})$. For example, 17² carries 307, which carries 7 and 11. Similarly, 13² carries 61, and 61² carries 13, in addition to 97 (which carries 7²). The general strategy is then to introduce mainly such new prime factors which are (at least to a large extent) carried by those already previously introduced, because this procedure will increase mainly C, but not **a**'.

It is convenient to look for "*cycles*" of prime powers carrying each other at least "partially", like 13 and 61 in the example mentioned above. Such "cycles" may

be used to get the whole process (of guessing **a**) started, and also to increase its efficiency later on. One may tabulate for this purpose such chains and cycles (or even "trees" and "clusters") of prime powers carrying each other (at least partially). On the basis of such a table, the construction of an appropriate number **a** (with C big and hence **a'** and D' > 0 relatively small) becomes a nice kind of a number-theoretic puzzle, which can be solved by trial and error without too much computational effort. In the last few steps of guessing appropriate prime factors of **a**, one will change the strategy, and try directly to minimize D' by the last few choices.

Bergische Universität Gesamthochschule Wuppertal FB 7 Mathematik Gaussstr. 20 5600 Wuppertal 1, West Germany

1. W. BORHO, "Befreundete Zahlen," in *Lebendige Zahlen*, Math. Miniaturen, vol. 1, Birkhäuser, Basel, 1981.

2. W. BORHO, H. HOFFMANN, "Breeding amicable numbers in abundance," Math. Comp., v. 46, 1986, pp. 281-293.

3. P. BRATLEY & J. MCKAY, "More amicable numbers," Math. Comp., v. 22, 1968, pp. 677-678.

4. R. K. GUY, Unsolved Problems in Number Theory, Vol 1, Springer-Verlag, New York, Heidelberg, Berlin, 1981, pp. 31-32.

5. E. J. LEE & J. S. MADACHY, "The history and discovery of amicable numbers," J. Recreational Math., v. 5, 1972, pp. 77–93, 153–173, 231–249.

6. H. J. J. TE RIELE, "On generating new amicable pairs from given amicable pairs," Math. Comp., v. 42, 1984, pp. 219-223.

7. H. J. J. TE RIELE, W. BORHO, S. BATTIATO, H. HOFFMANN & E. J. LEE, Table of Amicable Pairs between 10^{10} and 10^{52} , Centrum voor Wiskunde en Informatica, Note NM-N8603, Stichting Math. Centrum, Amsterdam, 1986.

8. H. J. J. TE RIELE, "Computation of all the amicable pairs below 10^{10} ," Math. Comp., v. 47, 1986, pp. 361-368.